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We study the equilibrium behavior of one-dimensional granular clusters and one-particle granular gases for
a variety of velocity-dependent coefficients of restitution r. We obtain equations describing the long-time
behavior for the cluster’s pressure, rms velocity, and granular interspacing. We show that for extremely long
times, clusters with velocity-dependent coefficients of restitution are unstable and dissolve into homogeneous,
quasielastic gases, but clusters with velocity-independent r are permanent. This is in accordance with hydro-
dynamic studies pointing to the transient nature of density instabilities for granular gases with velocity-
dependent r.
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I. INTRODUCTION

Granular materials are present in many natural systems
and play an important role in our daily lives �1,2� and in the
economy since an estimated 1.3% of the U.S. electric power
consumption goes into grinding particles and ores �3�. The
interest in such systems ranges from the purely theoretical to
daily practical applications, such as in the construction in-
dustry �2�.

Typical granular systems �GS� are composed of large
numbers of discrete macroscopic grains. Their shape is usu-
ally irregular, but in the present work we will consider them
as smooth regular spheres of diameter d in vacuum, as a
good approximation that still captures some of the essential
physics of the problem. However, their dynamical and statis-
tical properties may be affected by the presence of an inter-
stitial medium, such as air or a liquid when their Bagnold
number is small enough �2,4�. Granular materials behave in
interesting ways exhibiting different features from ordinary
solids, liquids, and gases, such as arches redistributing loads
to the sides of solid arrangements of grains and inelasticity-
induced nontrivial velocity distributions in rapidly flowing
granular gases. Even some basic laws of thermodynamics,
such as the zeroth law, may fail when extended to GS �5–7�.

A very important aspect of the behavior of GS is their
inherent tendency to cluster, i.e., a compaction due to an
enhancement of the rate of collisions inside the system, ac-
companied by granular cooling down �kinetic energy reduc-
tion�. Many authors have studied granular gas clustering, or
compaction for denser systems. For GS, their behavior is
initially homogeneous and starts with a given amount of ki-
netic energy �7–11�, and they are subsequently left to cool
down on their own. Their initial cooling behavior, the homo-
geneous cooling state �HCS�, obeys Haff’s law �11,12� for
granular temperature �the typical internal average kinetic en-
ergy for the grains�.

For longer times and rarefied granular systems, the inter-
granular collisions tend to correlate the motion �velocities
and positions� of the grains, and techniques from kinetic

theory will not be reliable anymore, at least in its simplest
form �13–15�. Theoretical models have developed from this
notion and obtained scaling forms for the transport coeffi-
cients �16,17� when the velocities of masses of grains be-
come correlated inside a region of a certain characteristic
length.

For clusters coalesced from smooth granular gases �no
tangential restitution�, there are no mechanisms for the ex-
change of angular momentum, and rolling does not occur �a
totally irrelevant sliding motion between grains may still be
present, but the rotational motion of the grains is not coupled
to the translational motion if the grains are smooth�. It is
legitimate, from a theoretical point of view, to ask whether
such structures are really permanently stable or if some other
mechanism could lead the system again to gaseous homoge-
neity.

It has been known for quite some time that the hydrody-
namic approximation predicts density instabilities for inelas-
tic, smooth, hard-sphere granular systems at zero gravity
�18� �velocity-independent coefficients of restitution�, while
for equivalent systems with velocity-dependent coefficient of
restitution �r�, such as the viscoelastic model �19�, the insta-
bilities are only transient �20�. Thus, the dependence of the
coefficient of restitution on the velocity might be the cause
of a possible cluster break-up. That is due to the fact that r
tends to 1 as the impact relative velocity tends to zero. How-
ever, to simulate a cluster break-up can become computation-
ally very costly, if no approximations are used. In most
event-driven molecular-dynamics simulations, the coefficient
of restitution has to be set to 1 as the relative velocity be-
comes smaller than an elastic threshold, so that collisions at
relative velocities lower than the threshold will be elastic
�11,20�. In order to be more realistic, one has to be able to
reach extremely long times and small velocities. This is the
goal of the present work. We will study a simple qualitative
model �a one-dimensional cluster� and obtain the asymptotic
solutions for its behavior at extremely long times, not yet
accessible to computer simulations.

We study systems with coefficients of restitution given by
the general form �21�, at small relative velocity g,*Corresponding author: Email address: welles@fis.puc-rio.br
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r = 1 − A� g

g0
�m

, �1�

where 0�A�1, and the constant g0 sets the dissipation
scale, and m�0. The cases m=0 �velocity-independent r�
and m=1/5 �viscoelastic� �19� are particular cases of Eq. �1�.

We assume that the system starts as a granular gas inside
a bounded one-dimensional container by walls at the ex-
tremities: one elastic and one inelastic. A cluster forms at the
inelastic end and a gas still exists at the elastic side after
some initial large time interval �15,22�. The granular gas
portion will consist ultimately of a single grain. We will use
this assumption in what follows, but this is not really essen-
tial; our results could easily be extended to multigrain gases,
provided the gas kinetic energy goes asymptotically to zero.

We will obtain equations of motion for the dynamic and
quasithermodynamic granular quantities: gas velocity, the
cluster granular temperature �in fact its rms velocity�, and
internal pressure. We will show that the cluster is unstable at
extremely long times, except for the velocity-independent
case �m=0�. Purely dynamic effects, due to energy dissipa-
tion, can be responsible for cluster formation but cannot hold
it together indefinitely, except for the unrealistic velocity-
independent coefficient of restitution case.

This paper is organized as follows. In Sec. II, we write the
basic equations of collision dynamics. In Sec. III, we present
our model and its corresponding equations. In Sec. IV, we
study the stability conditions for the cluster. In Sec. V, the
long-time behavior is extensively analyzed. In Secs. VI and
VII, we discuss some of the consequences of the model and
make our concluding remarks. The more technical aspects of
this work are to be found in Appendixes A and B.

II. BASIC ASSUMPTIONS

Our approach is qualitative in nature and we do not expect
it to reproduce the detailed behavior of a true granular cluster
but only a few of its crudest properties.

Our model consists of an unforced one-dimensional sys-
tem with N+1 identical smooth grains, with unit mass M
=1, which can be modeled by inelastic hard spheres with
velocity-dependent coefficient of restitution r, given by Eq.
�1�.

The grains are confined in a region of length L+ �N+1�d
�d is the granular diameter� by an elastic wall on the right
and an inelastic one on the left, as shown in Fig. 1. Relative
to each other, the elastic wall presents some similarities to a
“hot” wall while the inelastic one would be a “cold” one, as

in Ref. �23�, since the inelastic one is where the energy is
taken out of the system. However, we are not injecting any
amount of energy into the system and a steady state does not
develop. The inelastic collisions at the inelastic wall are gov-
erned by the same Eq. �1�, the wall being an infinitely heavy
grain. The velocities of two colliding grains will be �V1� ,V2��
after the collision, and �V1 ,V2� before it. They are related by

V1� = �1 − r

2
�V1 + �1 + r

2
�V2, �2�

V2� = �1 + r

2
�V1 + �1 − r

2
�V2. �3�

The system starts with a given initial amount of kinetic en-
ergy that will be dissipated due to the internal collisions. A
partial clustering of grains will initially occur at the inelastic
wall due to the pressure of the remaining gas �22�. The clus-
ter phase is formed when the relative velocities are large
compared with g0 and the coefficient of restitution differs
appreciably from 1. The gas will lose particles to the cluster
until only one gas particle is left �15�. The difference be-
tween clustering and collapse is important, since in the latter
an infinite number of collisions occurs among the particles in
a finite amount of time. However, the cluster is only a very
dense concentration of grains with small relative speeds. In
one dimension, clustering can precede collapse �for r close to
1� �24�.

After some initial interval of time, the velocities of all
grains, that of the cluster and that of the gas, will be much
smaller than the inelastic velocity scale g0 in Eq. �1�.

We label the gas particle as the zeroth particle while the
cluster ones are labeled from 1 to N. We assume g0�v0
�vi=1,. . .,N. Although the velocity of the gas particle is much
larger than the velocities of the particles forming the cluster,
the scaling factor g0 will also be a lot larger than the velocity
of the gas particle for long times. The following hierarchy
for the small expansion parameters holds �for m�0�,

� vi

v0
� � �v0

g0
�m

� � vi

v0
�2

� � vi

v0
��v0

g0
�m

. �4�

The logic of Eq. �4� is that at sufficiently long times
vi

g0

→0 and �since the gas will keep pumping energy into the
cluster� the ratio vi /v0 will not vanish �that will be checked a
posteriori, with respect to the long-time behavior of the clus-
ter�. We can assume �for m�0� that �vi /v0�� �v0 /g0�m. The
second inequality comes from a choice that the time we
choose to start our calculations is large but not too large,
since for even larger times, certainly �vi /v0�2� �v0 /g0�m. The
last inequality is a direct consequence of this choice of initial
time. Higher-order terms shall be discarded.

We assume that our model has initial conditions satisfying
Eq. �4�.

III. GAS-CLUSTER EQUILIBRIUM

A. Gas pressure

In order to calculate the pressure exerted by the gas on the
cluster, we need to take into account the momentum ex-

FIG. 1. The N particles of the cluster and the gas particle. The
average distance between two consecutive particles of the cluster is
� �not shown�, the diameter of each particle is d, and the total length
is L+ �N+1�d.
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changed between the gas particle and the cluster after each
collision between gas and cluster. A gas-cluster collision is
completed when the gas particle leaves the cluster with an
outgoing velocity �which is close in absolute value to its
velocity before collision� much larger than the typical clus-
ter’s particle velocity. This is illustrated in Fig. 1. We notice
that as the gas particle collides with the cluster, it is as if the
“fast particle” �gas� would pass through the cluster’s par-
ticles, collide with the inelastic wall, and go all the way back
in the direction of the elastic wall. The process can be re-
peated until the “fast particle” crosses the whole cluster, back
and forth. Thus, we obtain, to leading order, the momentum
exchanged between the gas and cluster. This is calculated in
Appendix A, Eq. �A6� �notice that V is the speed of the
incoming gas particle, V�0 always�,

V̇ = − �2N + 1�
A

4L
� V

g0
�m

V2, �5�

where the flipping of the “fast particle’s” velocity at the in-
elastic wall is correctly taken into account in the final result
above.

From Eq. �A7� �m�0�, we obtain

pgas =
�Pcluster

�t
=

�1 + m�
2

V̇

V
�̇ , �6�

where pgas is the pressure exerted by the gas on the cluster,
and �Pcluster is the inelastic change of cluster momentum due
to the collision with the gas particle.

For m=0, Eq. �A12� gives us

pgas =
1 − �1 − A�N

1 + �1 − A�NV̇ . �7�

We will assume in the following that the product NA is
small. Our results, being valid for small NA in the m=0 case,
will show that collapse happens in a finite amount of time.
This will certainly be valid for the case of large NA.

B. Cluster variables

Other important variables exist that we need to take into
account. The variance of the cluster’s particle velocities 	2 is
one of them. It is defined as

	2 =
	i=1

N
�vi − vc.m.�2

N
, �8�

where the cluster’s center-of-mass velocity is given by

vc.m. =
	i=1

N
vi

N
. �9�

Another such variable is the mean granular spacing, �. It
is defined by �with xN+1=0�

� =
	i=1

N+1
�xi − xi−1 − d�

N
. �10�

The cluster’s full size is thus N�d+��. A somewhat crude, but
reasonable, approximation for the cluster’s center-of-mass

velocity can be obtained by assuming that the cluster ex-
pands or contracts rather uniformly �at least for small ��, and
thus

vc.m. 
 	
i

N

Ni�̇ =
N�N + 1�

2N
�̇ . �11�

In the limit of large N, the expression above reduces to

vc.m. 

N

2
�̇ .

The center-of-mass acceleration then reads

ac.m. =
N�N + 1�

2N
�̈ . �12�

C. Wall pressure and mean spacing

The cluster feels two external sources of pressure: the
pressure from the gas and the pressure due to interactions
with the inelastic wall. That pressure can be calculated using
a crude approximation by assuming that the momenta ex-
changed between the particle labeled N at every collision is
of the order of 2	 and the rate of collision is 	 /� �25�. The
mean-field wall pressure is then

pwall =
2	2

�
� 0. �13�

The equation of time evolution for the mean spacing � is
obtained by writing Newton’s law for the cluster �pwall is a
positive force while pgas is a negative one�,

ac.m. = pwall + pgas.

Using Eqs. �6�, �12�, and �13�, we obtain the mean-field
equation for m�0,

N

2
�̈ =

2	2

�
+

�1 + m�
2

V̇

V
�̇ . �14�

The equivalent equation for the case m=0 is obtained
from pgas given by Eq. �A12�,

N

2
�̈ =

2	2

�
+

1 − �1 − A�N

1 + �1 − A�NV̇ . �15�

D. Energy dissipation inside the cluster

A calculation similar to that for the gas velocity reduction
is done in Appendix B for the energy of the cluster, due to
the effect of gas-cluster collision. At the order of approxima-
tion we have set, �V /g0�m, the corrections will be of the order
	2�V /g0�2m �much smaller than 	2 /��. The comparison of the
cluster’s kinetic energy before and after a collision with the
gas particle then reads

	
i

N

�vi���2 = 	
i

N

�vi�2. �16�

The cluster’s kinetic energy is not affected by the gas-cluster
collision, at the order of approximation used. This tells us
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that only internal collisions will be important for cooling
down the cluster.

In a mean-field approximation, the energy dissipated per
particle corresponds to the product of the energy lost in each
collision and the rate of collision per particle. For an
N-particle one-dimensional gas confined in a free volume,
l1D, with the typical velocity variance 	 �v is the typical
velocity, of the order of the square root of the variance 	�,
the energy loss per collision corresponds roughly, in dimen-
sionless terms, to

�v 
 − �v�1+m.

The rate of collision is proportional to v / l1D �25�. So, in
order to calculate the rate of dissipation of energy inside the
cluster, with typical interspacing becoming very small as t
→�, but not yet zero, we need to estimate the internal col-
lision rate and multiply it by the loss of energy for each
collision. The rate of collisions for a cluster only differs from
that of a gas because its interspacing � is very small com-
pared to L. Taking it into account, the cluster’s collision rate
is now obtained as

q = N
	

2�
.

The variation of the cluster’s typical internal velocity is due
to the collision between grains. We assume that colliding
grains will have relative velocities of the order 	 and the
quasielastic collisions �in the limit g→0� will switch those
velocities with a small loss,

�	 = − A� 	

g0
�m

	 .

The change in 	 per unit time is the product q�	. Thus we
obtain the heuristic equation

	̇ = −
NA	2

2�
� 	

g0
�m

. �17�

The equivalent form for m=0 is derived from Eq. �B7�
from Appendix B,

	̇ � −
	2

�
. �18�

IV. DIMENSIONLESS ANALYSIS

We want to study, qualitatively, the conditions under
which the cluster will be stable, and we shall use the ap-
proximate equations of motion obtained above. However, we
will not be interested in the fine details of the equations
themselves, only in their asymptotic behavior in time. Then,
we will rewrite Eqs. �5�, �14�, �15�, and �17� in a completely
dimensionless form �notice that V ,	 ,��0 for all t�. First,
the equations for V and 	 have the same form for both m
=0 and m�0. They read

V̇ = − V2+m, �19�

	̇ = −
	2+m

�
. �20�

The equation for �̈ for m=0 reads

�̈ =
	2

�
+ V̇ �21�

and that for m�0 reads

�̈ =
	2

�
+

V̇

V
�̇ . �22�

In order to recover the dimensional units, remember that
	 and V are given in terms of g0, and � is measured in terms
of L /N. A few dimensional constants have to be used in Eqs.
�19�–�22� in order to make both sides dimensionally coher-
ent.

Equation �19� can be exactly solved, obtaining

V =
V0

�1 + �1 + m�V0
1+mt�1/�1+m� . �23�

This is the extension of Haff’s law �12,26� to the cases de-
scribed by Eq. �1�. We observe that as

t → � Þ V � t−1/�1+m� Þ Tg � t−2/�1+m�.

For the case of velocity-independent coefficient of restitu-
tion, m=0, Tg� t−2. For the viscoelastic coefficient of resti-
tution case �19�, m=1/5, Tg� t−5/3 as expected �26�. Equa-
tions �20�–�22� will constitute the system to be solved in the
following.

V. LONG-TIME BEHAVIOR

We must keep in mind that there is an implicit velocity
scale g0 that divides the velocity variables whenever a power
of m comes into play �a consequence of the form of the
coefficient of restitution�. For the constant coefficient of res-
titution case, we obtain a useful equation by combining Eq.
�20� with Eq. �21�,

�̇ − V +
	1−m

1 − m
= c0, �24�

where the constant c0 is related to the initial conditions for V,
	, and � by

c0 = �̇0 − V0 +
	0

1−m

1 − m
. �25�

The equations describing the granular cluster are valid in the
limit when V�	 , �̇. In the following, we analyze the cluster
behavior for the whole range of values of m based on Eqs.
�19�–�24�. The figures are obtained by solving numerically
Eqs. �19�–�24�.

A. m=0

In this case, the coefficient of restitution does not depend
on the impact relative velocity. We have

E. THIESEN AND W. A. M. MORGADO PHYSICAL REVIEW E 73, 051303 �2006�

051303-4



c0 = �̇0 − V0 + 	0 
 − V0, �26�

�̇ = V − 	 − V0. �27�

As t→�, we observe that V and 	 tend to zero �27� and thus
�̇
−V0�0.

In practice, it is impossible to observe the asymptotic
limit above since the collapse happens in a finite amount of
time �see Fig. 2�. The cluster is thus stable and will not
dissolve itself.

B. m�0

When the coefficient of restitution depends on the initial
relative velocity, i.e., m�0, we can see that the physical
behavior of the system changes qualitatively, as shown in
Appendix A.

A scaling argument can be used and compared with the
result of simulations in order to obtain the very long-time
behavior of the variables V, 	, and �. The asymptotic solu-
tions for � and 	 can be written as powers of time and
log-time,

V � t�1, 	 � t�2�ln t�
2, � � t�3�ln t�
3, �28�

where we have already determined �1,

�1 = −
1

1 + m
.

The solutions for 
2, �2, 
3, and �3 are


2 = −
1

m
, �29�

�2 = 0, �30�


3 = −
1

m
, �31�

�3 = 1. �32�

Thus, the long-time behavior of 	 and � is given by

	 � �ln t�−1/m and � � t�ln t�−1/m. �33�

These are self-consistent, logarithmically corrected solu-
tions for 	 and � at long times. However, we need to look
into the long-time behavior of 	 in more detail.

For m�0, there is no granular collapse. After some tran-
sient time, the cluster will grow almost linearly �as can be
seen in Fig. 3, consistent with the main behavior of �� t� and
will eventually occupy the whole container, in fact becoming
once again a granular gas with interspacing ��L /N. It takes
an enormous amount of time for this to happen. This is illus-
trated in Fig. 3, where we compare the cases m=0.2, m=1,
and m=2.

At long times, our model becomes quasielastic, to a very
good approximation, when m�0. For the velocity-dependent
case, the internal dissipation for the cluster becomes negli-
gible ��2=0� but its internal energy is not conserved. The
apparent contradiction between �2=0 and 	→0 does not
hold since 	 decays as a power of ln t. Even more signifi-
cantly, in our model ��L /N and the growth of � has to be
cut off correspondingly. Since our mean-field equations do
not impose a boundary to �, Eq. �20� will give us 	̇→0 as
t→�, consistent with �2=0. In reality, after reaching the
cutoff size, normal gas dissipation takes over and the former
cluster will follow Haff’s law for energy dissipation again.

Another important consistency argument can be extracted
from Eq. �33�. If we take the limit m→0 before the limit t
→� is taken, we observe that �=	=0 results. This is in
complete agreement �remember that the initial time is taken
to be long for the m�0 case� with our result that a granular
collapse happens in a finite interval of time when m=0.

It is interesting to notice at this point that in Ref. �20� the
authors simulated a velocity-dependent granular system with
an elastic threshold �r=1 below a certain threshold relative
velocity� and supposed their results to be extensible to the
viscoelastic regime. This is in accordance with our results.
However, the form of the coefficient of restitution in Ref.
�20� mimics much more closely the m�1 case than the m
=0.2 case. As we observe in our calculations, � will neither
tend to zero nor remain stable in both cases, which is con-
sistent with the results in Ref. �20�.

C. Oscillations

An interesting feature we have observed is very low fre-
quency size oscillations at very long times. Equation �20�

FIG. 2. Coefficient of restitution independent of the velocities.
The only stable case at all times. The mean spacing � is measured in
units of L /N.

FIG. 3. Time evolution for a few examples of velocity-
dependent coefficients of restitution: full line, m=0.2 �viscoelastic
model�; dashed line, m=1; dotted line, m=2.
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predicts oscillations with decreasing frequency. We can study
the case of a small perturbation on � such as

� = t�ln t�−1/m�1 + �� .

We obtain, after some straightforward algebra, the
asymptotic equation for the relative perturbation �,

�̈ +
ln t

t
�̇ +

2 ln t

t2 � = 0. �34�

It is similar to a low frequency damped harmonic oscillator,
with a frequency that goes to zero as t−1�ln t�1/2.

The effect of small perturbations in the asymptotic value
of � is rather hard to observe directly. However, we observed
it by initially running our simulations in order to obtain aged
values of �, 	, and its derivatives. We then perturb � as �1
+���, with �=1.0�10−4.

We run two subsequent calculations, with an aged and
unperturbed solution as the initial condition, and another for
the perturbed one. Their difference should also obey Eq.
�34�. The result is plotted in Fig. 4, on a logarithmic scale
�we plot the absolute value of �; the signs correspond to
whether � is positive or negative�.

It can be seen that the period is indeed increasing �it is of
the order of the total time, consistent with a “frequency” of
order t−1�ln t�1/2�.

VI. CONSEQUENCES OF THE MODEL

The most immediate consequence of the present model
�for m�0� is the evidence it provides of the transient nature
for some of the granular singularities in a freely cooling
granular gas with a velocity-dependent coefficient of restitu-
tion. This indicates that a hydrodynamic treatment might be
adequate for such systems, at least after a transient time.

Also, we deduce from our results that purely dynamical ef-
fects cannot give rise to permanent clusters if m�0 at the
zero-energy feeding regime.

Another consequence is the eventual evaporation of clus-
ters for smooth granular systems. The inviscid Burgers’ equa-
tion has been proposed as a mechanism of formation for a
granular cluster with velocity-independent coefficient of res-
titution �11,28�. For systems with m�0, one may ask
whether that equation is still adequate, and what kind of
regime might replace it, in the evaporative period �at ex-
tremely long times�. Work is currently underway along this
direction.

The noncollapse when m�0 gives us hope that it might
be possible to treat two- or three-dimensional clusters as very
dense, but nonsingular, granular phases �for smooth systems�
describable by internal, nondiverging, variables �maybe even
similar ones to the 	 and � used in this manuscript�. That
could make it easier to incorporate the treatment of clusters
into the hydrodynamic methods available today.

VII. CONCLUSIONS

We study the long-term stability of unforced granular sys-
tems, in which clusters form, with the help of a qualitative,
microscopic model that makes it possible to look at clusters
at extremely long times, not available to computer simula-
tions.

We assume a general form for the coefficient of restitution
that includes the well known velocity-independent and vis-
coelastic models as special cases.

We are interested in this problem for two main reasons.
First, despite its apparent simplicity, a granular cluster’s be-
havior, at extremely long times, depends on the amount of
inelasticity �which can be defined as q= 1−r

2 �. According to
our model, if the coefficient of restitution becomes 1 as the
relative velocity of impact tends to zero, as with most real-
istic systems, then clusters of rigid, smooth spheres will be
unstable �at least at zero gravity�. This suggests a rich dy-
namical behavior for our granular gas that comprises an ini-
tial homogeneous phase in which Haff’s law �12� predicts
the evolution of the average granular temperature. The sys-
tem goes into phase separation after a transient time and the
global kinetic energy varies with a different power of time
�11�. After a very long waiting time, the external granular gas
pressure no longer keeps the cluster particles together and
the cluster finally dissolves into an extremely slow moving
homogeneous granular gas. Haff’s law will once again apply
to this gas �since m�0�. This is not in contradiction with the
results in Ref. �28� since the results therein apply to systems
with velocity-independent coefficients of restitution �m=0�.

Secondly, for velocity-dependent coefficients of restitu-
tion, the clusters are not truly collapsed, but behave instead
as very dense, fluid phases �for zero surface friction and zero
gravity�. In fact, we could think of the gas-cluster phase co-
existence boundary as a smooth separation between the
granular gas and cluster phases, without a singular boundary,
except for the case of constant coefficients of restitution �m
=0�. An appropriate continuous hydrodynamic treatment for
it might be possible.

FIG. 4. Plot of the unperturbed value of � minus the perturbed
one, as a function of time, normalized by � itself. It is consistent
with Eq. �34�, a damped-harmonic-oscillator-like equation. The sign
corresponds to whether the oscillation has a positive or a negative
value, since the plot corresponds to the logarithm of the absolute
value of the difference between the two freely evolving solutions.

E. THIESEN AND W. A. M. MORGADO PHYSICAL REVIEW E 73, 051303 �2006�

051303-6



Questions arise concerning the long-time dissolution of
granular clusters: will they obey the same equations as the
ones that are found to apply for the collapsing phase? Since
the irreversibility of the “microscopic,” e.g., granular, dy-
namics prevents time reversal from applying, the dissolution
equations might be quite different from the collapse ones.
This is yet to be understood.

APPENDIX A: GAS-CLUSTER MOMENTUM EXCHANGE

1. m�0

From Eqs. �2� and �3� we obtain the postcollision veloci-
ties for two particles of the same mass �the collision time is
taken to be zero�,

v1� = �1 −
A

2
�v1 − v0

g0
�m�v0 +

A

2
�v1 − v0

g0
�m

v1, �A1�

v0� =
A

2
�v1 − v0

g0
�m

v0 + �1 −
A

2
�v1 − v0

g0
�m�v1. �A2�

The final velocity of the “fast particle” after crossing the
cluster can be calculated by the equations of basic collision
dynamics. Assuming g0� �v0�=V� �v1�, we can expand the
last term of Eq. �1� as follows:

�v1 − v0

g0
�m

= �v0

g0
�m�1 −

v1

v0
�m

� � V

g0
�m�1 + m

v1

V
� .

�A3�

The velocities of particle 1 and the gas particle, after the
first collision, can be rewritten with the help of Eqs. �A1� and
�A2� as

v1� 
 − V +
A

2
� V

g0
�m

V + �1 + m�
A

2
� V

g0
�m

v1,

now being the fast particle, and the gas one is now slow
�primes stand for fast-slow collisions�,

v0� 
 v1 −
A

2
� V

g0
�m

V − �1 + m�
A

2
� V

g0
�m

v1.

After � collisions, the fast particle velocity will be the �th
one,

v�� 
 − V + �
A

2
� V

g0
�m

V + �1 + m�
A

2
� V

g0
�m

	
i=1

�−1

vi,

and the ��−1�th particle �which suffered two collisions� has
the velocity

v�−1� 
 v� −
A

2
� V

g0
�m

V − �1 + m�
A

2
� V

g0
�m

v�.

After colliding N times, the fast particle will reach the
inelastic wall. Its velocity, prior to that collision, will then
read

vN� = − V + N
A

2
� V

g0
�m

V + �1 + m�
A

2
� V

g0
�m

pcl,

where pcl=	i=1
N vi, the cluster’s total momentum before col-

liding with the gas.
Hence the total momentum given by the gas to the cluster

�first part� is

�pcluster1
= − N

A

2
� V

g0
�m

V − �1 + m�
A

2
� V

g0
�m

pcl.

After the collision with the inelastic wall, it reads

V� = vN� = V − �N + 1�
A

2
� V

g0
�m

V − �1 + m�
A

2
� V

g0
�m

pcl.

The procedure for the calculations of how the fast particle
traverses the cluster is similar to the one above and the final
result is �up to the same approximation order�

v0� = V� − N
A

2
� V

g0
�m

V� + �1 + m�
A

2
� V

g0
�m

pcl� ,

where pcl� =	i=1
N vi�.

The momentum received by the cluster due to these col-
lisions is then

�pcluster2
= N

A

2
� V

g0
�m

V� − �1 + m�
A

2
� V

g0
�m

pcl� ,

= N
A

2
� V

g0
�m

V − �1 + m�
A

2
� V

g0
�m

pcl� .

Before the collision with the elastic wall, the fast particle
velocity is given by

v0� = V� − N
A

2
� V

g0
�m

V� + �1 + m�
A

2
� V

g0
�m

pcl� ,

= V − �2N + 1�
A

2
� V

g0
�m

V + �1 + m�
A

2
� V

g0
�m

�pcl� − pcl� .

After that last collision, the gas particle has the velocity

v0�� = − V + �2N + 1�
A

2
� V

g0
�m

V − �1 + m�
A

2
� V

g0
�m

�pcl� − pcl� .

Hence, the absolute value of the gas particle velocity varies
�for a single gas-cluster collision cycle� as

�V = − �2N + 1�
A

2
� V

g0
�m

V + �1 + m�
A

2
� V

g0
�m

�pcl� − pcl�,

= − �2N + 1�
A

2
� V

g0
�m

V , �A4�

where we discarded terms of the order O��V /g0�2m�.
Thus, the total momentum absorbed by the cluster from

the gas-cluster collision is given by
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�pcl tot = �pcluster1
+ �pcluster2

= − �1 + m�
A

2
� V

g0
�m

�pcl� + pcl�

= − �1 + m�A� V

g0
�m

pcl. �A5�

The reader should notice that we assume the initial time to be
large enough so that quantities such as NA�V /g0�m are small
and the total dissipation per gas-cluster collision can be a
small fraction of the gas kinetic energy.

Equations �A4� and �A5� are the fundamental result of
this appendix. We can transform them into rate equations by
determining the rate of gas-cluster collisions. The time inter-
val between successive collisions is given by �t=2L /V.

We obtain the equation governing the behavior of the ab-
solute value of the gas velocity,

V̇ 

�V

�t
= − �2N + 1�

A

4L
� V

g0
�m

V2. �A6�

The equation for the gas pressure, the rate of transfer of
momentum, is also obtained,

pgas 

�pcl tot

�t
= − �1 + m�

A

2L
� V

g0
�m

Vpcl.

Notice that for a large cluster, N�1, we can write

pgas =
�1 + m�

2

V̇

V
�̇ . �A7�

2. m=0

The case of a constant coefficient of restitution deserves a
separate treatment. In this case, we assume that A�1 and
r=1−A
1.

After a collision with a slow particle, the fast particle
acquires a velocity v�= �1−A�v. At the end of a sequence of
N such collisions, the velocity of the fast particle �before
colliding with the inelastic wall� will be

vN = �1 − A�Nv0.

The momentum exchanged with the cluster is then

�pc1 = ��1 − A�N − 1�v0.

After colliding with the inelastic wall, the gas particle has
a velocity vN=−�1−A�Nv0. After colliding another N times
with cluster particles, the gas particle velocity will be

vN� = − �1 − A�2Nv0.

The momentum exchanged with the cluster this time is then

�pc2 = − �1 − A�N��1 − A�N − 1�v0.

The total change in velocity for the gas particle, after
collision with the elastic wall, is given by

�V = − �1 − �1 − A�2N�V . �A8�

The rate of change of V is given �see the calculation for m
�0 above�,

V̇ = − �1 − �1 − A�2N

2L
�V2. �A9�

The total momentum gained by the cluster after the colli-
sion is then

�pc = �pc1 + �pc2 = − ��1 − A�N − 1�2V . �A10�

The gas pressure in this case will be given by �similar to the
case for m�0�

pgas =
�pc

�t
= −

��1 − A�N − 1�2

2L
V2. �A11�

We can see that the gas pressure is related to the change in
gas velocity through

pgas =
1 − �1 − A�N

1 + �1 − A�NV̇ . �A12�

There is a clear change in the gas pressure regime for m
�0 compared with the more commonly used case of m=0.
This makes the pressure applied by the gas weaker since, for

m�0, the factor V̇ �see Eq. �A12�� is multiplied by a factor
�̇ /V �see Eq. �A7��.

APPENDIX B: CLUSTER ENERGY DISSIPATION
IN THE GAS-CLUSTER COLLISION

1. m�0

In order to show that the cluster’s kinetic energy is not
affected by the gas-cluster collision on the order of approxi-
mation we have chosen, let us consider the sum of the ve-
locities after the first passage of the gas particle all the way
to the inelastic wall,

	
i=0

N−1

vi� = �1 − �1 + m�
A

2
� V

g0
�m�	

i=1

N

vi −
A

2
� V

g0
�m

NV .

�B1�

Our calculations are carried out to order N�V /g0�m in the
development of the coefficient of restitution, in the spirit of
Eq. �4�. We suppressed terms coming from orders smaller
than N�V /g0�m.

Let us also consider the sum of the velocities after the
passage back of the gas particle,

	
i=1

N

vi�� = �1 − �1 + m�
A

2
� V

g0
�m�	

i=0

N−1

vi� −
A

2
� V

g0
�m

NV .

�B2�

These equations can be added up giving

	
i=1

N

vi�� − 	
i=1

N

vi = − �1 + m�A� V

g0
�m

	
i=1

N

vi, �B3�

yielding the pressure exerted on the cluster by the gas.
We can proceed along similar lines for the sum of square

velocities and obtain
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i=0

N−1

�vi��
2 = 	

i=1

N

vi
2 − AV� V

g0
�m

	
i=1

N

vi �B4�

and

	
i=1

N

�vi���2 = 	
i=0

N−1

�vi��
2 + AV� V

g0
�m

	
i=0

N−1

vi�. �B5�

Equations �B1�, �B4�, and �B5� show that the kinetic en-
ergy of the cluster remains the same,

	
i=1

N

�vi���2 = 	
i=1

N

vi
2 + O�	2�V/g0�2m� . �B6�

2. m=0

As shown in Appendix A 2, the gas grain pumps momen-
tum into the cluster. We will assume that NA�1. This is not
too restrictive to our argument since we will show that a
long-time granular collapse happens for the quasielastic
velocity-independent coefficient of restitution case. Thus, it
will certainly happen for the case when NA is large too.

We noticed that as the fast grain collides with the cluster,
it gives energy to it by changing the particles’ velocities by

an amount proportional to NAV̇. After squaring all cluster
particles’ velocities �relative to the center of mass of the
cluster�, adding them all up, and subtracting the initial value
of it, we obtain a rate of energy, pumped into the cluster,

proportional to the product of V̇ and �̇.
The rate of change of 	 has two main contributions: a

negative one from internal collisions and a positive one from
gas-cluster collision. The second one is negligible and we do
not take it into account further. The reason for this is as

follows. Since �V̇�� ��̇V̇�, if we assume ��̇V̇��	2 /�, then 	
will decay more slowly when the energy pumping term is
present but the wall pressure term in Eq. �21� will still be
much smaller than the gas one. However, we can check a
posteriori that even when the energy pumping term is not
present, the mean interspacing falls at a linear rate in a finite
time �collapse, see Fig. 2�. It yields

	2/� � �V̇� � �V̇�̇� .

Thus, we only keep the internal collisions dissipation term
in the equation for 	̇,

	̇ 
 −
	2

�
. �B7�
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